TRANSLATE INTO 52 LANGUAGES

Tuesday 25 December 2012

senior cycle


SECTION A: OBJECTIVES
1.               Express the product of 0.06 and 0.09 in standard form
[A] 5.4 × 10-3                               [B ] 5.4 × 10-1      [C ]5.4 × 102        [D]  5.4 × 103
          2             Simplify   36 ½   ×   64 -1/2 ×  5 0
                                   [A] 2               [B] ¾      [C] 2 ¾                  D 4
3                 Find the number whose logarithm to base 10 is 2.6025
[A] 0.404                      [B] 40                    [C] 400.4                              [D] 0.04
       4.            The angles of a pentagon are x0,  2x0,  (x+60)0,  (x+10)0,  (x-10)0 find x
                                 [A] 30                            [B] 800                  [C] 0.8                   [D] 80
      5.            The angles marked in this diagram are measured in degrees, find x.   
                                         
                       [A] 240                   [B] 480                   [C] 300                   [D] 360
    6.        Convert 101101two to a number in base ten
                [A] 46                    [B] 45                    [C] 44                    [D] 61
     7.       In the diagram, PQRS is a parallelogram and <QRT=300. Find x.
                [A] 950                    [B] 1000                                [C] 1500                                         [D] 1200
     8.       Correct 0.04945 to two significant figures.
                [A] 0.49                [B] 0.050                              [C]0.040                               [D]0.049
     9.       Evaluate 71/2 –( 21/2 + 3) ÷ 33/2
                [A] 7                      [B] 8                       [C] 32                    [D]14
10.          In the diagram below, IQRI= 5cm, PQR =60 and PSR =450. Find IPSI.
                [A] 24                    [B] 12.25              [C] 13                    [D] 43   
        
11.   Each interior angle of a regular polygon is 1620. How many sides has the polygon?
         [A]    8       [B]    12      [c]      20       [d]      16
12.  From the diagram above, find the value of x.
                               
  [A]   25    [B]     40       [C]     20       [D]      30


13.   Which of the following is not true
  [A]   A parallelogram is a quadrilateral
  [B]   A rhombus is a parallelogram
  [C]   A square is a rhombus
  [D}   A square is a polygon
14.  Simplify ( 15/8 + 1 3/5) ÷ 53/5
       [A]    4/5     [B]      2/3     [C]     3/5   [D]     1/2
15.   186 is the result of increasing a number by 20%. Find the number.
     [A]    40     [B]     130    [C]   155    [D]   85

16.  Find the value of   4(3d - e) -2f when d=2, e=4 and f=3
    [A]   -3    [B]    6    [C]    2    [D]    4
17.  If  N = {  odd numbers greater than 11 }, which one of the following is an element of N?
    [A]    9      [B]     10        [C]       13       [D]    14
18.    In the diagram below, ABP = 1100 and DCP = 1630, calculate BPC
   [A]    470      [B]    630    [C]    930     [D]    1800                                                                      




19.  Which of the following statements is false?                                                
   [A]    12 є {2, 4, 6, 8…}
   [B]     {a, b } C { f, a, c, e }
   [C]     {1,2} U { 2, 3} == {2}
  [d]   If Z = {10}, n(Z) = 0
20.  Express 40cm as a percentage of 8m
    [A]   32%    [B]   20%     [C]   5%    [D]    8%
21.  Simplify  (1/4)-1.5
   [A]   21     [B]    8    [C]    2      [D]     4
22.  If a=1, b=2, and n=5,
    Find the value of 
  [A]   7    [B]    6     [C]     3      [D]     2
The table below shows the frequency distribution of a number of choirs in each of 40 rooms of various houses.
Use the table to answer Question 23- 25
23. Find the mean of the distribution.
  [A]     5.7      [B]      4.4       [C]      5.0      [D]   3.5
24.  Find the mode of the distribution.
   [A]    40      [B]     5       [C]      9    [D]    7
25. Find the median of the distribution
   [A]    3     [B]     5       [C]     4      [D]     4.5




26.  In the diagram, EF//QR, PE = 2cm, EQ= 4cm and FR = 6cm. Find x
         
[A]    4cm       [B]      3cm     [C]    5cm      [D]    6cm
27.  In the diagram, QRS is a Straight line, QP//RT, < PQR = 560 , <QPR = 480
        And <TRS = x0 Find x
   [A]   840    [B]     760   [C]     210     [D]   330
28. In isosceles ∆ ABC, ІABІ= ІACІ. If  B = 550  calculate A
   [A]    1250       [B]     700      [C]     810      [D]     350
29.  ABC is an equilateral triangle. P is a point on IACI such that PBC=460
        Calculate <APB 
 [A]   1000      [B]   1060        [C]    410      [D]     280
30.  Find the interior angles of a regular polygon which has 6 sides.
  [A]    700    [B]     1200       [C]      600      [D]     1400
31.  One of the following is not a polygon.
   [A]   Triangle   [B]   Rectangle    [C]     Square     [D]    cube
32.  How many pieces of string each 81/2 cm long can be cut from a string 421/2 cm long
     [A]   50      [B]    35      [C]     1/5    [D]    500
33.  A man gets a 10% pay rise. If his present wage is N 6000 per week, calculate his new weekly wage.
     [A]   N 250 [B]    N 700    [C]    N 300    [D]   N 6, 600
34.  Calculate the principal which earns N 75 075
       Simple interest in 11years at 7% p.a
     [A]   N 500     [B]   N 4 000   [C]     N 23 000     [D]    N 97, 500
35.  Remove the bracket and simplify 2a-(4a – 5a-7)
      [A]   2+a    [B]    -3 +4a    [C]    9a-2    [D]   3a-7
36.  Which of the following is incorrect?
     [A]   U = union   [B]  є = element   [C]  Ф = empty set  [D]  С = infinite set
37. Solve for the value of x in 22= 7 + 2⅟₂x
       [A]  18    [B]   7     [C]  4     [D]   6
38.  t= 3p/r  +  S    make r the subject of formular.
      [A]   r= t-p/s       [B]  r= t/p+t        [C]   r= t2/p+s        [D]  r= 3p/t-s
39. The square of  111two  is
      [A]   10001   [B]    11101    [C]    10111    [D]  110001
40. ABCDEF is a regular hexagon with O at its centre. What kind of quadrilateral is ABCO
       [A] Rectangle   [B] Square   [C]   parallelogram   [D]   Rhombus




41. In the diagram below, IPRI = IPQI, IOSI = IQRI and RPQ = 400 , calculate PQS.
     
       [A]   30⁰    [B]    70⁰     [C]    40⁰     [D]    85⁰  
Use the diagrams below to answer question 42 to 44

42. Which of the following triangles are congruent?
 [A]  ii   and iii     [B]   I and iv    [C]    iii and iv      [D]   I and iii
43.  Which of the following is/ are embedded angle?
  [A]  I   and ii    [B]   ii   and iii   [C]    I and iv   [D]    iii and iv
44. Which of the following is (AAS)
   [A]   i    [B]   ii      [C]    iv    [D]    iii
45.  Simplify    5x – 8x + x + 3y
   [A]   3y-2x     [B]    2-y       [C]   y-3x       [D]    3y+3x

46. Find the sum of angles in a regular heptagon.
   [A] 320⁰    [B]   900⁰    [C]   700⁰    [D]    540⁰
47. In the diagram below IXYI = IYZI, IXZI = IZHI and XYZ = 52⁰ calculate ZHX
   

48. The perimeter of a rectangle is 20m and the length is Xm. Find the area of     
   the rectangle in terms of x.
   [A]  2x+10   [B]  x-5    [C]    2x-20     [D]     10x-x2
49. If 8x-4 = 6x-10, find the value of 5x
   [A]   -15       [B]    6      [C]     7      [d]     3
50. Which of the following is not necessarily true of a rectangle?
    [A]   The diagonals are equal.
    [B]   Each diagonal divides the rectangle into
    [C]   The diagonals are perpendicular
    [D] Each diagonal divides the area of the rectangle equally.








SECTION B: THEORY
PART1: ANSWER ALL THE QUESTION IN THIS PART
1a. Simplify 125-⅟₃ × 49 × 10⁰
  b. list  (i)  four basic laws of indices.
              (ii) Two fractional indices.
1                     Use mathematical tables to evaluate
(a)         
(b)       
 
3a.    The sum of the interior angles of a regular polygon is 9000.      
         Calculate (i) The   number of sides   (ii)   The size of one   
         Exterior angle of the polygon.
  b.   Prove that the exterior angle of a triangle is equal to sum 
         of the opposite interior angles.                                                                         
4a.    Simplify 71/2 – ( 21/2 + 3 ) ÷ 33/2
  b.    Solve for the value of x in  3x-[3 (1+x) – 2x] =3

PART II:  ANSWER FOUR QUESTIONS ONLY FROM THIS PART
5a. The result of taking 3 from x and multiplying the answer by   
        4 is the same as
       Taking 3 from the x
b. 4m/317/21 = 6m-1/7  solve for m.



6a. Convert (i)    57ten to binary
                       (ii)  1101two to base Ten.
  b.  (i)   find ( 1012 )2 expressing the answer in base 2
        (ii)   Convert 1.101 from bicimals to decimals.
7a. Isosceles triangle ABC and ABD are drawn on opposite sides   
      of a common base AB. If ABC = 500 and ADB = 1100,  
      Calculate ACB and CBD.
                            

    b.   List 2 properties each of the following:
        (i)  Parallelogram      (ii)    A rhombus
        (iii) A rectangle          (iv)   A square.
8a.     S = { 1,2,3,4,5,6 } ,  T = { 2,4,5,7 } and R = { 1,4,5 } , find
(i)                                 { S n T } U R
(ii)                               { S U T } n R
    b. Define the following:
           (i)    Ф     (ii)   є   (iii)    n    (iv)    С
9a.  Remove the brackets and simplify.
(i)                               y( 2y-3) -  3(2y-3)
(ii)                            3( 3a-b) – 5(a-4b)
  b.   factorise
       (i)    -18pq – 12                                           (ii) 100 – 49x2
10a.  The following give the summary for congruency of two
         triangles. Draw the diagrams to represent each of the
         following.
(i)                                 SAS   (ii)   ASA     (iii)   SSS     (iv)   RHS
   b.   In a given parallelogram ABCD, simply show that the
          opposite sides are equal.
 



      


No comments:

Post a Comment